Durée :
00:56:04
Nombre de vues
4
Nombre d’ajouts dans une liste de lecture
0
Nombre de favoris
0
We consider the problem of Gaussian regression (possibly in a high- dimensional setting) when the noise variance is unknown. We propose a procedure which selects within any collection of estimators F = { ˆ f_ : _ 2 _}, an estimator hatfˆ_ that nearly achieves the best bias/variance trade off. This selection procedure can be used as an alternative to Cross Validation to : – tune the parameters of a family of estimators – compare different families of estimation procedure – perform variable selection.
Informations
- Yannick Mahe (ymahe)
-
- Université Paris 1 Panthéon - Sorbonne (production)
- Christophe Giraud (Intervenant)
- 21 juillet 2017 00:00
- Cours / MOOC / SPOC
- Anglais